

Chandra Detection of the WHIM toward Mkn 421

Fabrizio Nicastro (Harvard-Smithsonian Center for Astrophysics)

Collaborator

CfA:

T. Aldcroft

D. Burke

J. Drake

M. Elvis

A. Fruscione

Y. Krongold-H.

M. Marengo

A. Siemiginowska

A. Zezas

MIT:

H. Marshall

The ASM-team:

R. Remillard

A. Levine

H. Bradt

E. Morgan

Oss. Roma:

F. Fiore

P. Casella

Un. Roma-Tre:

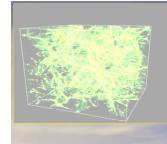
S. Bianchi

Oss. Arcetri.

C. Cecchi Pestellini

O.S.U.:

S. Mathur


D. Weinberg

C.M.U.:

T. Fang

Obs. Paris

J. Bergeron

Overview

- The WHIM in X-rays and FUV: Current Status
- The WHIM along the line of sight to Mkn 421
- The WHIM in X-rays: Future Prospects

The Baryon Budget at High z

• From Observations of the Ly α Forest at z=2:

$$\Omega_b > 0.035 \, h_{70}^{-2}$$

(Rauch et al., 1998; Weinberg et al., 1997)

maybe conservative by a factor 2-7, due to uncertainty in the meta-galactic radiation

Standard Bib Bang Nucleosynthesis, combined with observed light-element ratios, gives:

$$\Omega_b = 0.039 \, h_{70}^{-2}$$

(Burles & Tytler, 1998)

At High z, consistency on the estimated Baryon density

Baryons are Missing at Low z

$$\Omega_* + \Omega_{HI} + \Omega_{H_2} + \Omega_{Cl} < 0.02 \quad (2 \sigma) <$$

$$< 1/2 \text{ of } z = 2 \text{ value } (\text{for } h_{70} = 1)$$

(Fukugita, Hogan & Peebles, 1997)

TABLE 3				
The Baryon Budget				
Component	Central	Maximum	Minimum	Gradea
Observed at $z \approx 0$				
 Stars in spheroids Stars in disks Stars in irregulars Neutral atomic gas Molecular gas Plasma in clusters Warm plasma in groups Cool plasma Plasma in groups Sum (at h = 70 and z ~ 0) 	$\begin{array}{c} 0.0026\ h_{70}^{-1} \\ 0.00086\ h_{70}^{-1} \\ 0.000069\ h_{70}^{-1} \\ 0.00033\ h_{70}^{-1} \\ 0.00030\ h_{70}^{-1} \\ 0.0026\ h_{70}^{-1.5} \\ 0.0056\ h_{70}^{-1.5} \\ 0.0014\ h_{70}^{-1} \\ 0.021 \end{array}$	$\begin{array}{c} 0.0043\ h_{70}^{-1} \\ 0.00129\ h_{70}^{-1} \\ 0.000116\ h_{70}^{-1} \\ 0.00041\ h_{70}^{-1} \\ 0.00044\ h_{70}^{-1.5} \\ 0.00115\ h_{70}^{-1.5} \\ 0.003\ h_{70}^{-1} \\ 0.030\ h_{70}^{-1} \\ 0.041 \end{array}$	$\begin{array}{c} 0.0014\ h_{70}^{-1} \\ 0.00051\ h_{70}^{-1} \\ 0.000033\ h_{70}^{-1} \\ 0.00025\ h_{70}^{-1} \\ 0.00025\ h_{70}^{-1} \\ 0.0014\ h_{70}^{-1.5} \\ 0.0029\ h_{70}^{-1.5} \\ 0.0007\ h_{70}^{-1} \\ 0.0072\ h_{70}^{-1} \\ 0.007\end{array}$	A A – B A A – A B C B
Gas components at $z \approx 3$				
9. Damped absorbers	$0.0015 \ h_{70}^{-1} \ 0.04 \ h_{70}^{-1.5} \ \dots$	$\begin{array}{c} 0.0027 \ h_{70}^{-1} \\ 0.05 \ h_{70}^{-1.5} \\ 0.01 \ h_{70}^{-1.5} \end{array}$	$0.0007 \ h_{70}^{-1} \ 0.01 \ h_{70}^{-1.5} \ 0.0001 \ h_{70}^{-1}$	A — B B
Abundances of:				
12. Deuterium 13. Helium 14. Nucleosynthesis	$0.04 \ h_{70}^{-2}$ $0.010 \ h_{70}^{-2}$ $0.020 \ h_{70}^{-2}$	$\begin{array}{c} 0.054 \ h_{70}^{-2} \\ 0.027 \ h_{70}^{-2} \\ 0.027 \ h_{70}^{-2} \end{array}$	$0.013 \ h_{70}^{-2}$ $0.013 \ h_{70}^{-2}$	A A
^a Confidence of evaluation, from A (robust) to C (highly uncertain).				

...and in our own Local Group

> 1.5 x 10^{12} M_{\square} are needed to stabilize the Local Group (Kahn & Woltjer, 1959)

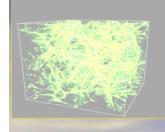
THE ASTROPHYSICAL JOURNAL

AN INTERNATIONAL REVIEW OF SPECTROSCOPY AND ASTRONOMICAL PHYSICS

VOLUME 130

NOVEMBER 1959

NUMBER 3

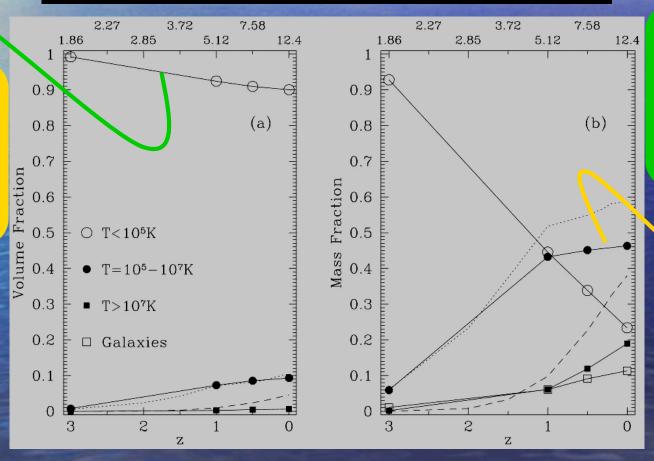

INTERGALACTIC MATTER AND THE GALAXY

F. D. Kahn* and L. Woltjer†

Princeton University Observatory and the Institute for Advanced Study, Princeton, New Jersey
Received May 18, 1959

ABSTRACT

It is shown that the Local Group of galaxies can be dynamically stable only if it contains an appreciable amount of intergalactic matter. A detailed discussion shows that this matter consists mainly of ionized hydrogen and that stars can contribute only a small fraction to its total mass. The most likely values for the intergalactic temperature and density are found to be 5×10^5 degrees and 1×10^{-4} proton/cm³, respectively. It is thought that this gas confines the halo. The distortion of the disk of the Galaxy, revealed by 21-cm observations, is analyzed. This effect cannot be regarded as a relic from a primeval distortion, which occurred at the time of formation of the Galaxy; a more promising explanation for it can be given in terms of the flow pattern of the intergalactic gas past the Galaxy and of the resulting pressure distribution on the halo.

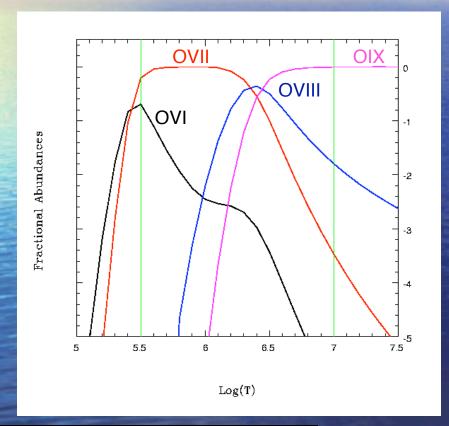


The Baryon Content in the Universe

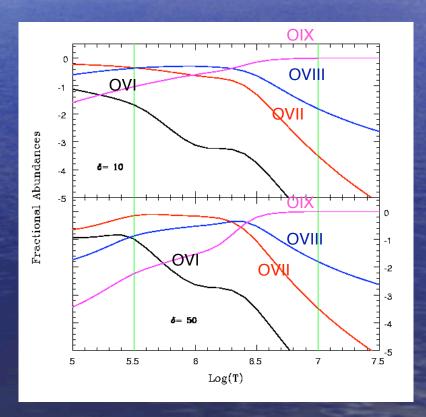
Mass Fraction vs Volume Fraction

(Cen & Ostriker, 1999)

Cool (Lya)
gas
dominates
Volume at
all z



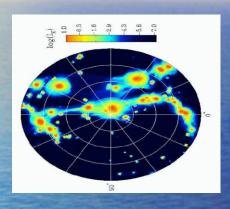
Warm-Hot gas dominates Mass at low z



Abundant lons in the WHIM

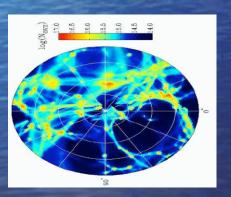
Collisional Equilibrium

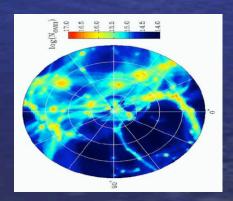
Perturbating with the XRB: $U \sim 0.1 \ \delta^{-1}$ at any z



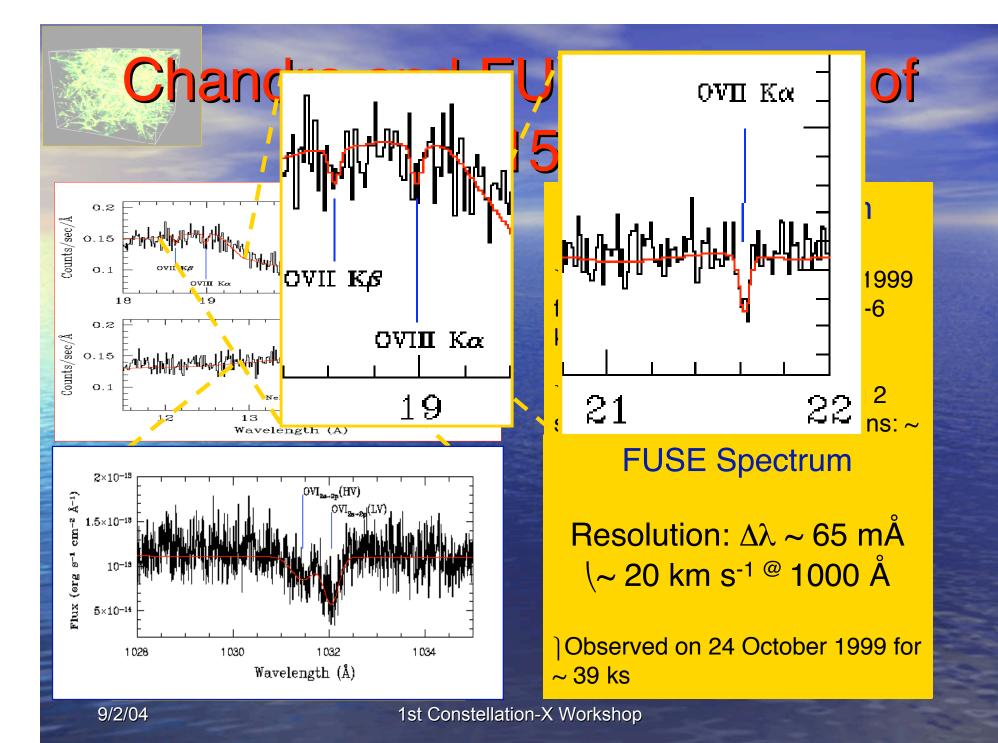
OVII, OVIII dominates

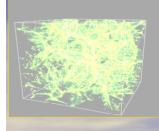
SED from Parmar et al., 1999; Boldt et al., 1987; Fabian & Barcons, 1992)


The WHIM Filament in the Local Supercluster Environment


0.5-2 keV Brightness in ph/s/cm²/sr

OVI column density in cm⁻²


OVII column density in cm⁻²



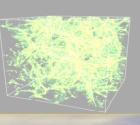
OVIII column density in cm⁻²

(Kravtsov, Klypin & Hoffman, 2002)

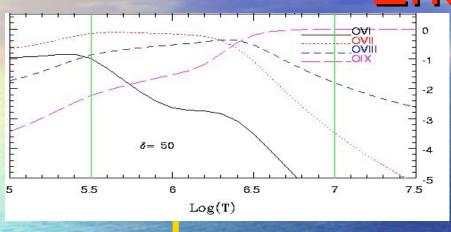
Equivalent Width Ratios Diagnostics

 All absorption Lines fall in the linear branch of the Curves of Growth (CoG)
 \ EW \infty Ion Column Density :

$$EW_{X^i} \approx 2.2 \times (\xi_{X^i}/0.4)(A_X/10^{-5})(N_H/10^{22})(f_{lu}/0.5)$$
 eV



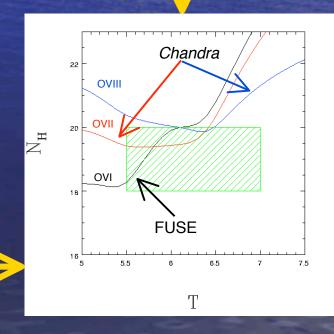
For 2 ions from the same element


For 2 ions from different elements

$$\frac{\xi_{X^{i}}}{\xi_{X^{[i+n]}}} = \frac{EW_{X^{i}}}{EW_{X^{[i+n]}}} \times \frac{f_{lu}(X^{[i+n]})}{f_{lu}(X^{i})}$$

$$\frac{\xi_{X^i}}{\xi_{Y^j}} = \frac{EW_{X^i}}{EW_{Y^j}} \times \frac{f_{lu}(Y^j)}{f_{lu}(X^i)} \times \frac{A_Y}{A_X}$$

One Line of Sight is not Enough

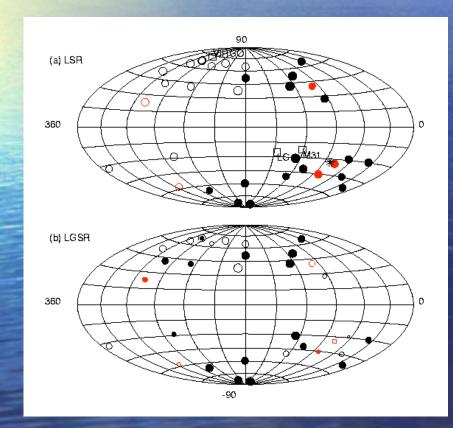


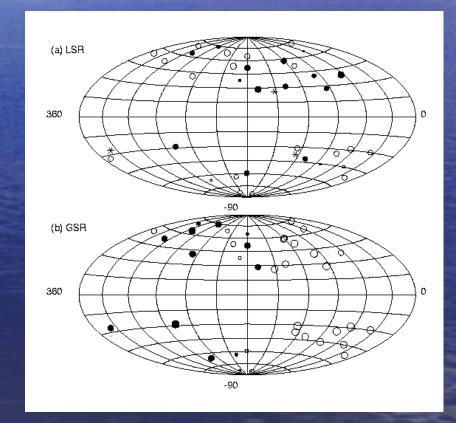
Typical WHIM Absorption
Lines:
EW(OVII,OVIII) <~ 10 mÅ
EW(OVI) ~ 70 mÅ
Chandra and FUSE Sensitivity

X-ray Flux = 4×10^{-10} erg/s/cm²: Very Bright (700 cts/res.el. At 20 Å in 60 ks *Chandra*-LETG)

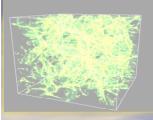
UV-Flux = 5×10⁻¹⁴ erg/s/cm²: Moderate Flux (30 cts/res.el. In 20 ks FUSE)

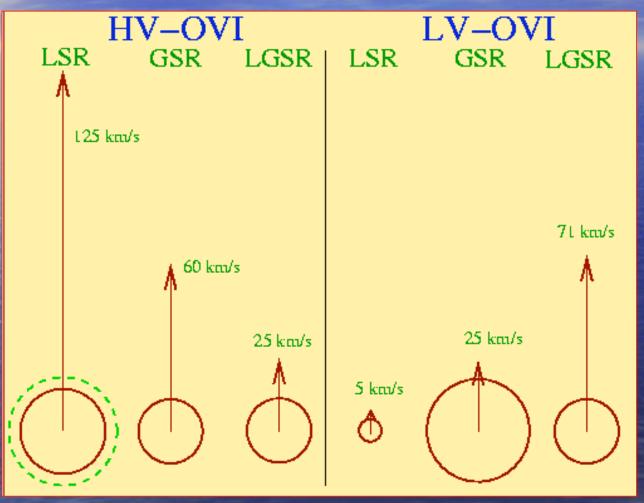
3 σ N_H detection



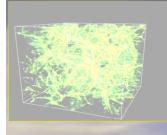

OVI Velocity Segregation

HV-OVI


Strong Segregation in the LSR



Nicastro et al, Nature, 421, 719



Average Velocity Vectors

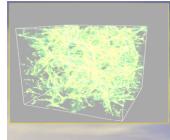
(Nicastro et al., Nature, 421, 719)

1st Constellation-X Workshop

The Local Group WHIM

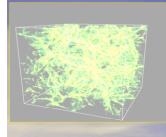
- X-Rays (Chandra and XMM-Newton): PKS 2155-304, MKn 421, 3C 273, NGC 4593, NGC 5548 (Nicastro et al., 2002, ApJ, 573, 157; Fang et al., 2003, ApJL, 586, 49)
 - ~ EW(OVII) ~ 10-15 mÅ
 - $N_{OVII} \sim 10^{16} \text{ cm}^{-2}$
 - ~ 700 counts per res. el. needed at 21.6 Å
 - (calibration sources, outbursts, or long-exposures: 0.5-1 Ms)
- Far-UV (FUSE): ~ 80-90 % of AGNs show HV-OVI: at rest in the LGSR (Nicastro et al., 2003, Nature, 421, 719; Sembach et al., 2003, ApJ, submitted)
 - $-100 \text{ km s}^{-1} < IV_{LSR}I < 450 \text{ km s}^{-1}$

The Local Group WHIM (2)


Observation

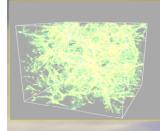
- HV-OVI Absorbers are at rest in the LGSR
- logT = 5.8; $\delta = 20-30$
- $[Ne/O] = 2.5 [Ne/O]_{\square}$
- Total Mass = $(0.6-2)\times10^{12} [H/O]_{0.3}M_{\square}$

Implication

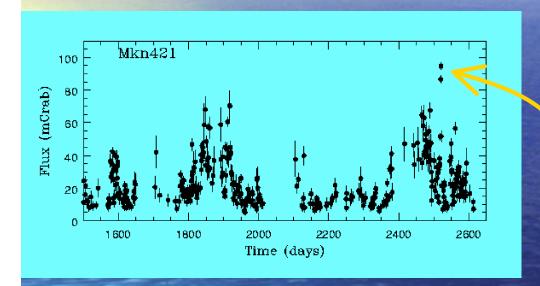

Not in Milky Way Halo

- Fits Predictions for Warm-Hot IGM
- Dusty IGM?
- Can Bind the Local Group

WHIM Detections: 1


- Detecting the Local Group WHIM Filament is relatively easy, because we are in it: any direction probes
 half filament.
- Consistently all Chandra or Newton-XMM spectra of AGN with enough statistics to detect 10 mÅ absorption lines at 21.6 Å, show OVII-OVIII Absorption by the Local Group WHIM: 6 different lines of sight.

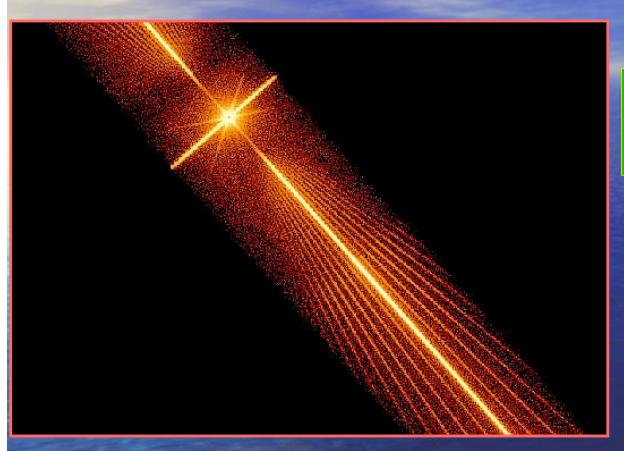
The z > 0 WHIM


- Detecting z > 0 WHIM filaments is harder because of random orientation: lines of sight to background sources cross only a portion of the filament.
- Until very recently, only 3 tentative detections have been claimed, along 2 different lines of sight (Fang et al., 2002, Mathur et al., 2002).
- Exceptionally high quality X-ray spectra of background AGN are needed, implying exposures of Ms on the brightest blazars in their normal state.

Alternatively...

Our Strategy

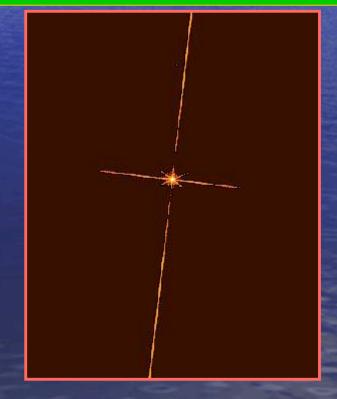
(Chandra Cycle 4 and Newton-XMM Cycle 2)



- •Blazars flare to > 10 times normal
- Trigger ToO (from Rossi-XTE ASM)
 - Outbursts last 1-2 weeks

1

1st TOO on 2002 October 27 Spectacular Results!

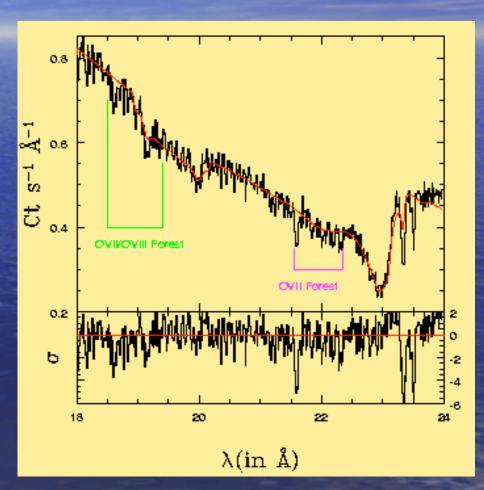

Mkn 421: Dispersed Image

2002, October 26-27: > 10x brighter!

The Second Brightest:

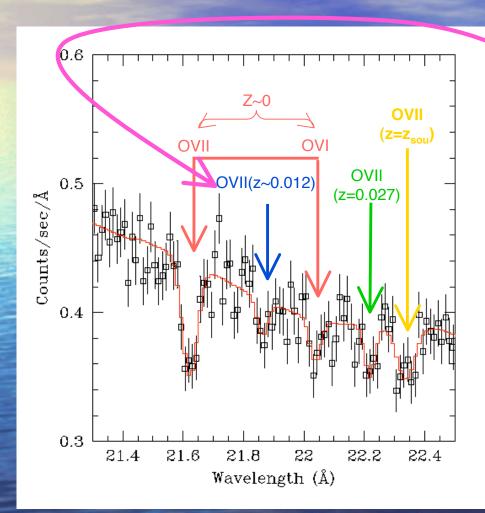
PKS 2155-304, 60 ks with *Chandra* HRC-LETG

Mkn 421: Chandra 1st Order Dispersed Spectrum


- •F(0.5-2 keV) > 0.1 Crab
- •4.5 Mcts!!
- •~ 3000 ct/r.e., @ 21 Å

Enough to detect (at $> 3\sigma$):

 $EW_{Abs} \ge 2.5 \text{ mÅ}, @ 21 \text{ Å}$


Implying:

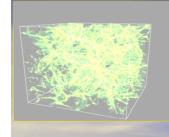
 $N_{OVII} \ge 10^{15} \text{ cm}^{-2}$ \ NH \ge 10^{19} \text{ cm}^{-2}, \text{ for } \text{Z/Z}_{\propto} = 0.1 \ Path Lengths \ge 1 \text{ Mpc, for } \delta = 20

The OVII Forest

H Ly α at z = 0.01

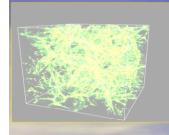
 $LogN_{OVII}(z=0.01) = 15 \text{ (cm}^{-2})$ $LogN_{OVII}(0.027) = 15.2 \text{ (cm}^{-2})$

 $dN_{OVII}^{predicted}(z < 0.03, EW > 3.1mA) = 1.2$


$$dN_{OVII}^{observed}(z < 0.03, EW > 3.1mA) = 2$$

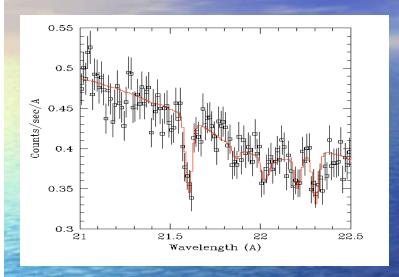
dN/dz = 35-70

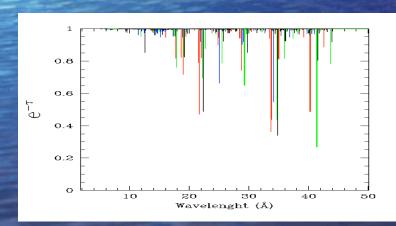
Summary


- Chandra ToO of Mkn 421 probes unprecedented N_{OVII} and detects 1-2 trees in the "X-ray Forest".
- Based on that detection: $dN_{OVII}/dz \sim 35-70$ (cf. $dN_{OVI}/dz = 20$, Tripp & Savage, 2000): the majority of baryons at z < 2.
- Alternatively, jet interaction with the ISM, up to velocities of ~ 6000 km s⁻¹

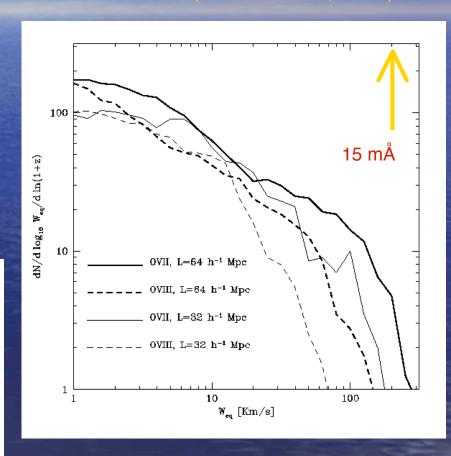
Future Prospects: Con-X and the WHIM

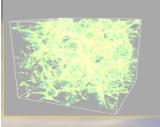
What can we learn

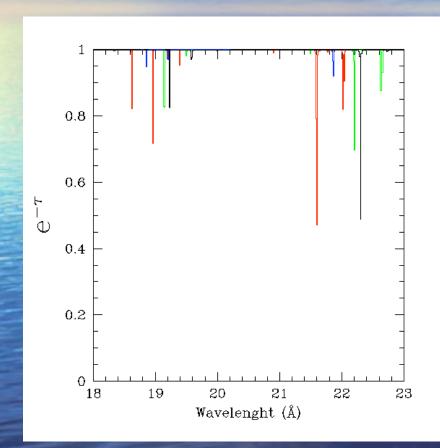

- Cosmology: large scale structure formation; Dark Matter distribution
- Heating mechanisms of gaseous baryons in the Universe
- Chemical history of the Universe: feedback mechanisms (refine hydrodynamical simulations)



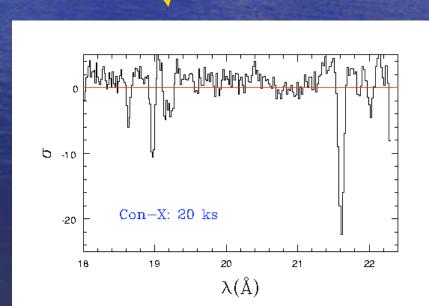
How do we learn this?


- Map the WHIM at z < 2 (Eff. Area)</p>
- Measure dN_{WHIM}/dz (Eff. Area)
- ightharpoonup Measure $T_{WHIM}(z)$, dT_{WHIM}/dz (Resolution)
- Measure relative contribution of photoionization (Resolution)
- Measure dZWHIM/dz (C, O, Ne, Mg, etc.)
 total baryonic mass (Eff. Area & Res.)


Probing the WHIM Strength: a Constellation-X task



(Hellsten et al., 1998)

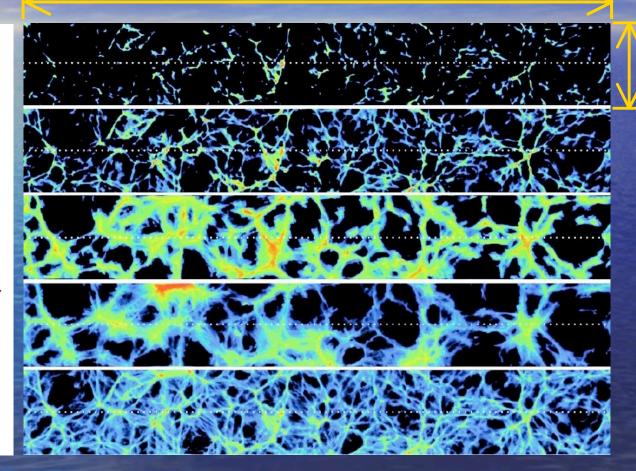


Mkn 421 through Constellation-X

20 ks (100 mCrab)

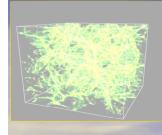
A Random Line of Sight...

350 h⁻¹ Mpc


 $N_{OVII} \sim 10^{15} \text{ cm}^{-2}$

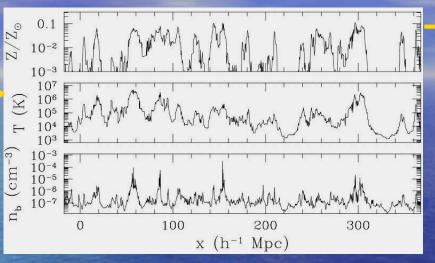
 $N_{OVIII} \sim 10^{15} \text{ cm}^{-2}$

 $Z/Z_{\square} \sim 0.05$ -0.3

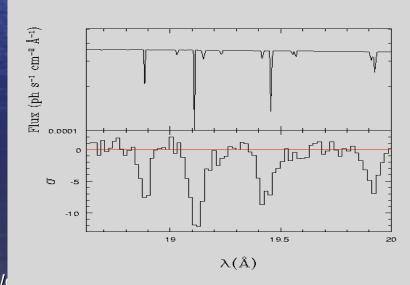

 $T \sim 10^{5.5} - 10^7$ K

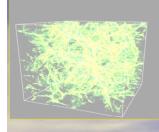
 $n_b \sim 10^{-6} - 10^{-5}$ cm-3

(Hellsten et al., 1998)

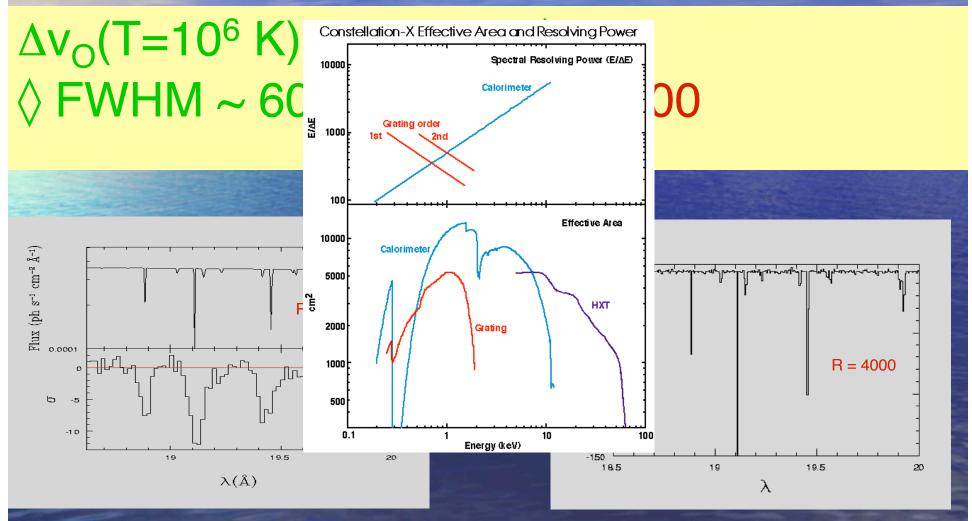

64 h⁻¹ Mpc

The WHIM through Constellation-X


Background QSO



100 ks



ConX

However...Physics need Resolution

Short and Long Term Prospects

- Next 2-4 years: collect data from 12 sightlines towards blazars in outburst: up to z = 0.5: \ dN_{WHIM}/dz , Ω_{b} , $T_{WHIM}(z<0.5)$, dT_{WHIM}/dz , dZ/dz
- Long Term: mapping the WHIM up to z=2: needs high throughput and spextral resolution in X-ray: Constellation-X (R > 1000, A = 2000 cm²)

The Detection of the Missing Baryons in the Local Universe

Fabrizio Nicastro (Harvard-Smithsonian Center for Astrophysics)

Collaborator

CfA:

T. Aldcroft

D. Burke

J. Drake

M. Elvis

A. Fruscione

M. Marengo

A. Siemiginowska

A. Zezas

MIT:

H. Marshall

The ASM-team:

R. Remillard

A. Levine

H. Bradt

E. Morgan

O.S.U.

S. Mathur

Oss. Roma:

F. Fiore

P. Casella

Un. Roma-Tre:

S. Bianchi

Oss. Arcetri:

C. Cecchi Pestellini

